Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries.
نویسندگان
چکیده
Previous studies based on measurements made in the ascending aorta have demonstrated that it can be useful to separate the arterial pressure P into a reservoir pressure P* generated by the windkessel effect and a wave pressure p generated by the arterial waves: P = P*+p. The separation in these studies was relatively straightforward since the flow into the arterial system was measured. In this study the idea is extended to measurements of pressure and velocity at sites distal to the aortic root where flow into the arterial system is not known. P* is calculated from P at an arbitrary location in a large artery by fitting the pressure fall-off in diastole to an exponential function and assuming that p is proportional to the flow into the arterial system. A local reservoir velocity U* that is proportional to P* is also defined. The separation algorithm is applied to in vivo human and canine data and to numerical data generated using a one-dimensional model of pulse wave propagation in the larger conduit arteries. The results show that the proposed algorithm is reasonably robust, allowing for the separation of the measured pressure and velocity into reservoir and wave pressures and velocities. Application to data measured simultaneously in the aorta of the dog shows that the reservoir pressure is fairly uniform along the aorta, a test of self-consistency of the assumptions leading to the algorithm. Application to data generated with a validated numerical model indicates that the parameters derived by fitting the pressure data are close to the known values which were used to generate the numerical data. Finally, application to data measured in the human thoracic aorta indicates the potential usefulness of the separation.
منابع مشابه
On the Mechanics Underlying the Reservoir-Excess Separation in Systemic Arteries and their Implications for Pulse Wave Analysis
Several works have separated the pressure waveform p in systemic arteries into reservoir p(r) and excess p(exc) components, p = p(r) + p(exc), to improve pulse wave analysis, using windkessel models to calculate the reservoir pressure. However, the mechanics underlying this separation and the physical meaning of p(r) and p(exc) have not yet been established. They are studied here using the time...
متن کاملHybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran
Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...
متن کاملPermeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran
Accurate permeability estimation has always been a concern in determining flow units, assigning appropriate capillary pressure andrelative permeability curves to reservoir rock types, geological modeling, and dynamic simulation.Acoustic method can be used as analternative and effective tool for permeability determination. In this study, a four-step approach is proposed for permeability estimati...
متن کاملبرآورد سرعت موج پالس با استفاده از پارامترهای شریانی استخراج شده از تصاویر فراصوتی کاروتید
Background & Objective : Several indices have been introduced to estimate arterial stiffness that based on changes in brachial blood pressure. But because of the error resulted by the substitution of brachial blood pressure instead of the other central arteries, such as carotid, it will be very important to present elastic parameter based on the mechanical models without any emphasis on brach...
متن کاملMeasuring the Nitroglycerine-Induced Vasodilation in Carotid Arteries
Introduction: Nitroglycerin is a fast-acting drug that rapidly dilates coronary arteries and thus increases blood flow to these vessels, and increases the blood flow through the lateral vessels to low blood areas. It also reduces both end diastolic pressure and volume of the left ventricular. However, the effect of nitroglycerin on the circulation hemodynamic is not known. Caro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
دوره 222 4 شماره
صفحات -
تاریخ انتشار 2008